Skip to content

World Water Day 2014: energy production, fragmentation and freshwater ecosystems.

March 21, 2014

WWD_2014_logo_ENTomorrow, March 22nd 2014, is the United Nations World Water Day, an annual event that focuses attention on the importance of freshwater environments. A 2012 UNICEF report estimates that at least 780 million people globally – approximately one in nine of the world’s population – do not have access to safe, clean drinking water.

This year, the theme of the day is energy.  The World Water Development Report launched today, focuses on the relationships between water and energy production, outlining that hydroelectricity is the world’s largest source of renewable energy, and roughly 75% of all industrial water withdrawals from global freshwaters are used for hydroelectricity.   These are key global issues, as David Malone, Rector of the United Nations University – the convenors of this year’s World Water Day – states: “Energy and water are at the top of the global development agenda … it is essential that we stimulate more debate and interactive dialogue around possible solutions to our energy and water challenges”.

Given that more than 1.3 billion people globally do not have access to electricity, one thread that World Water Day aims to discuss is the merits of using freshwater as an energy source.  Hydroelectricity offers the potential of renewable, low-carbon energy production – advocated under the Kyoto Protocol’s Clean Development Mechanism  – but what are the effects of its development on freshwater environments?

Image credit: World Water Day 2014

Image credit: World Water Day 2014

Hydropower, fragmentation and ecological stress

From the perspective of the MARS project, we could see this debate as being about the different stresses that energy production places upon freshwater environments.  A key stress on freshwaters by energy production is fragmentation from hydropower schemes.

Dams built for hydropower fragment rivers, altering the timing, quantity and quality of water flows, permanently flooding surrounding upstream areas and providing barriers to the movement of animals, sediment and nutrients (see this World Commission on Dams report from 2000).  This process of fragmentation has the potential to significantly alter the ecological functioning and health of freshwater ecosystems, and reduce the services they provide to humans.

Hydropower and ecological, social and economic sustainability

Former director of the WWF Freshwater Program Jamie Pittock, whose current research examines the relationships between water and energy, suggests that this process of fragmentation is synergistic with another major freshwater stress – climate change.  In a 2010 viewpoint article in Water Alternatives, Pittock suggests that as climate change continues to develop and impact on freshwaters – causing water scarcity in some areas, flooding in others – more hydropower schemes are built as low-carbon energy policy solutions, adding further stresses to freshwater environments already under threat.

According to a 2003 UN report, 60% of the world’s largest 227 rivers are severely fragmented by dams and other diversions.  As Ute Collier of the WWF Freshwater Programme outlines in a 2004 paper ‘Hydropower and the Environment: Towards Better Decision Making’, a key question to answer is how the potential of sustainable, low-carbon energy production offered by hydroelectric schemes can be balanced with the negative ecological impacts of fragmenting freshwater ecosystems.

In addition, Collier notes that the negative effects of ecosystem fragmentation and degradation by hydroelectric schemes often disproportionately affect the poorest in society by displacing communities and reducing ecosystem service production, for example fish to eat and water to drink.  Can we manage the energy, food and water needs of growing populations without compromising the health of our freshwater ecosystems?

Image credit: World Water Day 2014

Image credit: World Water Day 2014

Certification for sustainable hydropower schemes?

A potentially promising development is the foundation of the Hydropower Sustainability Assessment Forum in an effort to design a certification scheme to ensure certain environmental and social guidelines are met by new hydropower schemes.  The Hydropower Sustainability Assessment Protocol was launched in 2011, to give a set of criteria against which hydroelectric schemes could be assessed for environmental, social, technical and economic sustainability.

Such certification schemes already successfully exist for sustainable wood (Forest Stewardship Council), palm oil (Roundtable on Sustainable Palm Oil) and fish (Marine Stewardship Council) markets.   It will be interesting to see what effect the Hydropower Protocol has on future hydropower development, particularly in how ecosystem health can be conserved or restored as part of such schemes.

A wider to debate – lend your voice

World Water Day is a valuable event to prompt debate about these issues, and discuss them amongst a global community.  This article has only highlighted one strand of a major, emerging debate over the interrelationships between energy and water.  We’d encourage you to leave a comment below if you’ve any thoughts, ideas or questions on this or the wider debate.

2 Comments leave one →
  1. March 22, 2014 07:09

    Hydroelectricity is certainly not ‘green’, contrary to most people’s impression. The removal of dams and the restoration of the Elwha River in northwest Washington State is my idea of real progress.

  2. March 25, 2014 16:58

    “Certification for sustainable hydropower schemes?” is a pipedream. As long as our energy consumpotion keeps on rising, and for utterly wasteful practices such as using lights in office buildings in the daytime, and zillions of lights on all night across the world, enormous heating and cooling, for our convenience, and so on. While energy efficient appliances are coming out, the thirst for electricity globally is far greater. and, in the end, for hydropower to be environmentally “friendly” one cannot have mega dams, But microhydel makes sense only for local regions and not for transfer of power to far off cities. a lot of challenges.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: