Skip to content

Happy new year from the Freshwater Blog: our Top 14 of 2014

January 2, 2015

Beneath the waterline. Image: Jack Perks

A happy new year to all our readers.  In 2014 we made a few changes to this blog, renaming it as The Freshwater Blog, and moving its editorship from the BioFresh project to MARS.

As ever, though, in 2015 we intend to bring you the same mix of features and interviews about why our global freshwaters are special, and what projects like MARS and SOLUTIONS are doing to help conserve and safeguard their future.  If you’ve any suggestions, comments or ideas, please feel free to email us: info [at]

For now, here’s fourteen of our most popular posts from 2014, we hope you enjoy them.


1. Introducing the MARS project

Part 1 | Part 2


2. What we talk about when we talk about uncertainty


The heavy floods in early 2014 in the UK have caused two fascinating social effects.  First, as freshwater breaks its usual bounds and becomes a risk to life and livelihood, a wider group of people become interested in how our water should be managed, and why.  Second, we begin to encounter complex ideas of uncertainty in understanding the drivers and causes of such flooding events and their interaction: heavy, sustained rainfall; urbanisation on the flood plain; silted, hydrologically inefficient (but perhaps, biodiverse) river channels.  What are the main drivers of these floods?  How do they interact?  And what measures should we prioritise for future management?” (link)


3. Meet the MARS Team: Sebastian Birk

Seb presenting to the  MARS kickoff meeting in Mallorca (photo: Christian Feld)

Seb presenting to the MARS kickoff meeting in Mallorca (photo: Christian Feld)

“Recently I read a newspaper article about the growing public awareness regarding environmental issues. Despite this, however, there is no effective halting of biodiversity loss in our freshwaters, and salmon shoals do not yet return to German rivers. This seems contradictory, but it is symptomatic of our modern-day society: walking the thin line between green consciousness and green-washing. I believe that MARS can provide a fundamental contribution to enhance sustainable management of our freshwaters for the benefits of humans and nature.” (link)


4. Bioindicators for Israel’s freshwaters: multiple demands and multiple stressors

Yellow water lily (Nuphar lutea) in the Snir River, Upper Galilee (Image: Wikipedia)

Yellow water lily (Nuphar lutea) in the Snir River, Upper Galilee (Image: Wikipedia)

“At present, much of Israel’s freshwater diversity remains un-catalogued – a shortfall that is particularly acute amongst smaller organisms such as insects, crayfish, snails and worms. Without knowing exactly what biodiversity is present, it is impossible to know what is being lost.” (link)


5. Beavers, ecological stress and river restoration

Reflecting on restoration (Image: Per Harald Olsen)

Reflecting on restoration (Image: Per Harald Olsen)

“In February 2014 a family of wild beavers were photographed on the River Otter in Devon, South West England by a retired ecologist. The animals are believed to be the first evidence of populations living and breeding outside captivity in England for over 400 years. Their (re)discovery prompts a number of questions for the form and function of British freshwaters. What impact will the beavers return have on freshwater ecosystems and human livelihoods? What reference conditions do we use to monitor and assess restoration and reintroductions? How can the new ecological stresses and processes caused by beavers be managed in such environmental restoration, if at all? These questions are central to the MARS project’s wider research on stress and environmental restoration.” (link)


6. Is there life on MARS?

Yellowknife Bay in the Gale Crater on Mars, where evidence of an ancient freshwater lake has been found.  Image: NASA/JPL-Caltech/ASU

Yellowknife Bay in the Gale Crater on Mars, where evidence of an ancient freshwater lake has been found. Image: NASA/JPL-Caltech/ASU

“Recent findings from NASA’s Curiosity Rover mission to Mars have suggested that a large freshwater lake, potentially capable of supporting life, existed on the planet around 3.5 billion years ago – around the time that life began to emerge on Earth.  So, as the MARS project works on Earth’s freshwaters, the Curiosity Rover is uncovering evidence of freshwater on Mars.” (link)


7. Can an ecosystem service approach strengthen river restoration?

River Ribble, Lancashire.  Image: RSJ

River Ribble, Lancashire. Image: RSJ

“Worldwide efforts to conserve river ecosystems are failing, and new approaches for stronger conservation planning are required.  This is the underlying context of a new editorial ‘Rebalancing the philosophy of river conservation’ by MARS scientist Steve Ormerod in Aquatic Conservation Marine and Freshwater Ecosystems.  Ormerod suggests that the ecosystem service approach can offer a valuable addition to current river conservation strategies, potentially providing convincing new arguments to help halt freshwater biodiversity loss.” (link)


8. Why run a science blog? An interview with Paul Jepson

Screenshot from 'Water Lives...' animation (2012)

Screenshot from ‘Water Lives…’ animation (2012)

“One of the main values of the blog is as a node on a network of different people loosely connected with freshwater research, conservation and policy.  This network also includes wider interest groups: fishermen, aquarium keepers, wild swimmers and the general public. The blog becomes a place where all sorts of information can be pulled together and put across in a clear, engaging way.  I think ideally, it brings different people together to find out and celebrate the value of freshwaters.”

Part 1 | Part 2


9. When is a river not a river? Challenges for managing temporary waterways

Dry river bed near Mt. Seoraksan in Korea.  Image: Wikimedia

Dry river bed near Mt. Seoraksan in Korea. Image: Wikimedia

“Not all rivers and streams plot a constant course towards the sea.  Some naturally dry up when there is little rain, leaving behind a dry stream bed which floods the next time there is a heavy storm.  In fact, most river systems have areas where at least some of the river bed will dry up, usually for days, sometimes for months or years. A new journal article in Science by Vicenç Acuña and colleagues including BioFresh leader Klement Tockner argues whilst temporary rivers and streams are extremely important, both ecologically and culturally, they are not adequately managed and protected by current environmental policy.” (link)


10. Daylighting Urban Rivers

Cheonggyecheon stream in Seoul, South Korea, daylighted from sewers in 2003.  Image: Kaizer Rangwala, Flickr.

Cheonggyecheon stream in Seoul, South Korea, daylighted from sewers in 2003. Image: Kaizer Rangwala, Flickr.

“Deculverting or ‘daylighting’ is the process of uncovering buried urban rivers and streams, and restoring them to more natural conditions. Daylighting can create new habitat for plants and animals, potentially reduce flood risks, and create new ‘green corridors’ through urban areas, a good example being the highly successful restoration of the Cheonggyecheon stream in Seoul, South Korea. Adam Broadhead’s Daylighting website maps deculverting projects around the world as a means of sharing information on their outcomes and effectiveness.  We spoke to Adam to find out more about this fascinating and innovative project.” (link)


11. Do anglers makes good conservationists? An interview with Mark Lloyd of the Angling Trust

Salmon jumping Stainforth Force on the River Ribble, Yorkshire.  Image: Jonathan Bliss, Flickr

Salmon jumping Stainforth Force on the River Ribble, Yorkshire. Image: Jonathan Bliss, Flickr

“Anglers are the eyes and ears of the waterside.  They spot pollution and other problems before anyone else, and their knowledge of the water environment means that they can tell when something is wrong.”  Mark Lloyd, chief executive of the Angling Trust is putting the case to me in favour of anglers as good conservationists of Britain’s freshwaters. Do anglers make good conservationists, and does angling benefit conservation?(link)


12. An eye in the sky: using drone technology to monitor freshwaters

Aeryon Scout drone, increasingly used for mapping global environments.  Image: Wikipedia

Aeryon Scout drone, increasingly used for mapping global environments. Image: Wikipedia

“Developments in unmanned aerial vehicle (UAV) technology are providing new, potentially cost-effective opportunities for ecologists and conservationists to monitor and protect ecosystems, particularly in remote areas. As yet, there has been little research on the potential of drone technology for monitoring freshwater ecosystems.  However, a new journal article “The potential of remote sensing in ecological status assessment of coloured lakes using aquatic plants“ by MARS scientist Sebastian Birk and Frauke Ecke addresses this shortfall.  Their paper explores the potential of drones for monitoring the health of remote Swedish lakes.” (link)


13. Beneath the waterline: an interview with underwater filmmaker Jack Perks

Arctic char.  Image: Jack Perks

Arctic char. Image: Jack Perks

Underwater filmmaking has a rich – but largely oceanic – history, from Austrian biologist Hans Hass’s pioneering work in the 1940s and Folco Quilici’s 1954 first full-length full-colour film Sesto Continente through to stunning modern footage such as in the BBC’s Blue Planet series and in Werner Herzog’s Encounters at the End of the World. Jack Perks, an English natural history photographer and filmmaker, is attempting to bring freshwater environments into focus through his Beneath the Waterline project, which aims to document all of the UK’s freshwater fish on film.  Keen to find out more, we spoke to Jack about his work and the challenges of filming freshwater life.(link)


14. Introducing the MARS river and lake experiments

NIVA experimental flumes for studying extreme flows in Nordic Rivers.  Image: Susi Schneider

NIVA experimental flumes for studying extreme flows in Nordic Rivers. Image: Susi Schneider

“Freshwater ecosystems around the world are subject to multiple stresses on their health and diversity – for example, pollution, water abstraction and river fragmentation through dam building. Researchers from the MARS project are interested in understanding the causes and impacts of these multiple stresses, and – crucially – how they make interact and multiply any potential negative impacts on the environment.  Similarly, there is a need for research to simulate how multiple stresses might affect freshwaters under future climate change – how will changes to rainfall, temperature and storm frequency (amongst other factors) affect multiple stresses on freshwater ecosystems? In order to explore some of these questions, MARS researchers have set up seven experimental sites across Europe.” (link)

Corridors and buffers: Claudia Gray on riparian zones in Malaysia and across the world

December 22, 2014
River riparian zone in oil palm plantation, Sabah, Malaysia.  Image: Claudia Gray
River riparian zone in oil palm plantation, Sabah, Malaysia. Image: Claudia Gray

Claudia Gray
is a Post-doctoral Research Fellow in Ecology and Conservation at the University of Sussex.  Working in collaboration with PREDICTS, her work uses the project’s global biodiversity database to investigate how landscape management can help biodiversity conservation.

In the past, Claudia’s research has explored approaches to sustainable management of oil palm plantations in Sabah, Malaysia.  One of the things she’s found is that riparian buffer zones – the strips of ‘natural’ vegetation left intact along river banks – are not only important for conserving freshwater ecosystems, but that they can help provide habitat for land-based animals, too.

Claudia made this excellent stop-motion animation to explain her research on biodiversity in oil palm plantations.

Claudia is now looking to collate information on riparian zone management and legislation across the world.  We spoke to her to find out more.

Freshwater Blog: Why are riparian buffer zones important? 

Riparian buffer zones are legally protected in many different countries because of their beneficial impacts on freshwater ecosystems. In particular, the root system and ground cover they create prevents the run-off of sediment and reduces the loss of soil.  This also helps stop agricultural chemicals, such as pesticides or fertilisers, washing into the water. The plants can also take up and use some of the excess fertiliser that may have been applied to the surrounding landscape, further reducing the quantity that ends up the river or lake.  Keeping the levels of sediment and pollution in the water low benefits a whole host of freshwater species, including fish and macroinvertebrates like dragonflies or snails. There are also massive benefits for people living downstream, as they have cleaner water.

Riparian zone through a Malaysian oil palm landscape.  Image: Claudia Gray

Riparian zone through a Malaysian oil palm landscape. Image: Claudia Gray

Riparian buffers also prevent some of the destructive influence that rivers can have. Keeping vegetation alongside water bodies increases the stability of the river bank, reducing erosion and changes in the shape of the river channel. The riparian vegetation also helps to slow down the speed at which water flows into rivers; regulating the water level prevents extreme floods and droughts downstream. Again, these impacts benefit both the species living in and alongside the water channel, and the people that are using the water.

As well as preventing negative impacts, riparian buffer zones can provide valuable resources. The leaves and other organic material that falls from the vegetation into a water body provides food for the herbivorous species at the bottom of the food chain. Long-standing vegetation can also sequester and store carbon, helping to reduce CO2 levels in the atmosphere. The riparian habitat can also provide a home for vulnerable species that would not otherwise survive in productive landscapes. If an area of forest is cleared for agriculture, the riparian buffer will be one of the few remaining fragments where forest-dependent animals can live. If the riparian buffers also link up larger remaining fragments of forest or other habitat, they can act as corridors for movement and connect up populations that would otherwise be isolated.

At the moment these benefits for terrestrial species are much less well understood and the management of riparian areas does not normally take them into account. In my PhD  I wanted to document what riparian buffers are doing for the species that don’t live in the rivers, and how current policy might be changed to improve the conservation value of the riparian buffers for these species.

Riparian reserve in Belian.  Image: Claudia Gray

Riparian reserve in Belian. Image: Claudia Gray

What’s the current situation with riparian zone management in Malaysia?

In Malaysia, riparian buffer zones are protected by law, and the width of the buffer has to be between 5 and 50m (on each side of the river), depending on the size of the river. However, the legislation varies between states – for example, in the state of Sabah (Northern Borneo) where I was working, only 20m of vegetation must be retained on each side of the river.

Luckily, many land managers and conservation organisations have recognised that this small amount of forest doesn’t really achieve that much. Along some of the larger rivers more forest is protected than is required. For example, along the Kinabatagan river (a major river in Sabah) several groups are working to protect and restore at least 100m of forest on each river bank along the whole river (e.g. WWF Corridor of Life). The restoration is hard work as the seedlings can be easily strangled by vines or trampled by elephants, but some really great progress is being made. The World Land Trust recently raised a million pounds to help protect existing forest along the Kinabatangan, in collaboration with local NGOs, and they continue to support this project.

Unfortunately, riparian vegetation has not been successfully protected along all rivers in Malaysia. In some cases this is because deforestation happened before the legislation came into place, in other cases the land managers have failed to meet the requirements. As the oil palm industry has expanded across Southeast Asia, oil palms have been planted along the river bank in lots of plantations. However, there is hope that this can change.

Any plantation that wants to be certified as a sustainable producer by the Roundtable for Sustainable Palm Oil (RSPO), must have riparian buffers, or be in the process of restoring them. Where restoration is needed, the application of chemicals is halted, the existing palms are left in place after they would normally be replaced, and native trees are planted in the shade beneath them. At the moment, the buffer width required by the Malaysian implementation of the RSPO criteria is the same as the national requirement (5 – 50m), but little ecological information is available to inform this guideline. At the moment, the majority of research on buffer zones is from North America. That research is not very helpful for rainforest and oil palm landscapes in the humid tropics where the ecosystems are completely different. Fopefully, we will be able to obtain much more information on tropical riparian buffers in the next few years, to better inform the management guidelines. Ongoing work at the SAFE project (where my PhD was based) will be contributing some valuable insights into the ecological impacts of riparian buffers.

Riparian zone in the oil palm landscape.  Image: Claudia Gray

Riparian zone in the oil palm landscape. Image: Claudia Gray

Tell us about your current research into riparian buffers across the world: how, where and why are you undertaking this?

So, my interest in riparian policy across the world really came out of trying to put my PhD research in context. My results indicate that small increases to the required riparian reserve width in Sabah could provide large gains for biodiversity, and so we were interested in what the buffer width requirements were in other, similar countries. Lots of people have asked “So if thats whats going on in Borneo, whats happening in other tropical countries?“. This is especially important to know for areas where oil palm cultivation is still expanding.

When I started looking into existing riparian zone legislation, it quickly became clear that guidelines and legal requirements for managing riparian zones vary substantially. Some countries require a particular buffer width depending on the river size, others consider whether the river is home to fish species, whether it a seasonal or permanent river, or the topography of the surrounding landscape. There are many different criteria being used in different parts of the world. In some cases a particular management approach is a legal requirement, in others it is only a guideline adhered to on a voluntary basis. Requirements can also differ between privately and publicly owned land.

The task of trying to get to know whats going on is made more difficult by language barriers, so I started asking friends working in different countries if they know what the legislation is there. I’m still very much at the beginning to trying to find out what is going on in a range of different countries, and I’m trying to focus on the tropical regions where oil palm is likely to be grown. In the end, I would like to be able to put together a summary of what riparian legislation is in place in a range of different locations, and then compare this to the ecological information that is available there.

Tell us about the information you’re looking to collate on riparian zones.  What are you looking for, and how can people contact you?  What will you use the data for?

At the moment, I’m hoping to gather as much information as I can on riparian legislation and management, in as many parts of the world as possible. I’m particularly keen to hear about what is going on in tropical countries. So the information I’m looking for is any description of what is required for riparian zones, and if what is actually happening there matches up to it.

For example, if someone comes from, or works in a particular country, and they happen to know that native vegetation is protected by rivers, even that much information would be great. If they know how much is protected, and what factors determine the level of protection, that would be amazing. Even if only the really rough details are known, that would be really interesting. Also, if someone knows that native vegetation should be protected, but isnt really maintained in practice, or is only maintained in certain areas (e.g national parks), I’d also like to hear about that. I’ve heard about some really great riparian restoration projects too, and would be very happy to get links to or descriptions of those. They can be really inspiring and lovely to hear about.

The point of the ongoing work is to try and combine information on the legal reality and stories of riverside habitats with what ecological information suggests we should be doing. With more information on what is happening on the ground, it will be possible to work out where the ecological research matches up to what is going on in real life, and where there are really big differences. This should help show where riparian habitats and the species that require them need a lot more support.

If anyone would like to get in touch to know more or send some information, that would be excellent. I’d also really like to get in touch with anyone doing similar work. The best way to contact me is via email: claudia.gray(at)

Claudia’s website
Claudia on twitter

SOLUTIONS research on chemical pollution on the Danube in Serbia

December 18, 2014
Novi Sad 1

Installing the water sampling devices on the Danube. Image: SOLUTIONS

This week we feature two guest posts by scientists from MARS’ sister project SOLUTIONS. On Monday, we heard about the first SOLUTIONS General Assembly.  Today, Werner Brack (UFZ Leipzig) and Ivana Teodorovic (University of Novi Sad) describe their research on chemical pollution on the River Danube in Serbia.

The River Danube is a truly international river which flows through ten countries across Central and Eastern Europe and has historically supported a wide range of freshwater species, yet is increasingly under pressure from pollution along its course.  New research by the SOLUTIONS project on the Danube around Novi Sad in Serbia aims to find out how untreated wastewater pollution affects both the river ecosystem and drinking water supply from nearby underground aquifers.

untreated water

Untreated wastewater in Novi Sad Image: SOLUTIONS

Researchers from the Helmholtz Centre for Environmental Research UFZ and the Faculty of Sciences from the University of Novi Sad sampled three large volumes of river water from the Danube upstream and downstream of Novi Sad.  The sampling team, led by Jörg Ahlheim from UFZ applied a new Large-Volume Solid-Phase-Extraction device to take samples of about 1000 litres of water 200m upstream and 7 km downstream of the biggest wastewater effluent outflows. Each of the sampling sites were fishing areas, where contamination is likely to affect the safe consumption of fish and thus human health. Local fishermen kindly supported the sampling campaign with their infrastructure and helped in words and deeds. Thanks a lot for that support.

novi sad 3

Local fishermen supporting the sampling team and Prof. Ivana Teodorovic (Faculty of Sciences, University of Novi Sad). Image: SOLUTIONS


Large-volume Solid Phase Extraction ‘Sputnik’. Image: SOLUTIONS

The new water sampling device has been developed by the UFZ together with the small enterprise MAXX in Rangendingen, Germany and successfully tested and applied on the  Joint Danube Survey 3 in September 2013. The device allows for on-site extraction of large volumes of river water for subsequent chemical and toxicological analysis. This technology avoids the transport and storage of large water volumes, which reduces logistic efforts and the risk of contamination. Only the smaller sample cartridges – the scientists call them ‘Sputniks’ – are transported to the lab for freeze-drying and subsequent extraction of chemical materials using solvents.

The extracts are awaited by a number of SOLUTIONS partners, who are tasked with developing a suite of effect-based tools – those which focus on the effects of mixed chemical ‘cocktails in freshwaters – which should help water agencies in Europe improve their monitoring of contamination and avoid unknown toxicants being overlooked. The samples from Novi Sad represent an interesting gradient of chemicals that will help to validate the tools.

To this end, the laboratories involved will investigate these samples for a large range of toxicological endpoints relevant for human and ecosystem health, such as toxicity to algae and fish embryos, mutagenicity (i.e. the process of mutation), adaptive stress responses and multiple hormone-like effects. At the same time the samples will be chemically screened for several hundred water contaminants to complete the picture on contamination. 

novi sad 2

Sandor Sipos (Faculty of Sciences, University of Novi Sad) and Jörg Ahlheim (UFZ) sampling downstream of Novi Sad. Image: SOLUTIONS

Arslan Kamal, a PhD student at the UFZ, and Sven Seidensticker from the RWTH Aachen plan to go one decisive step further, supported by experts on effect-based tools from SOLUTIONS. Combining biological and chemical tools, Kamal and Seidensticker want to stepwise reduce (i.e. through a gradual progression) the chemical complexity of the samples and identify those chemicals causing effects in bioassays (lab-based experiments to study the effect of chemicals on cells or tissues).


Bioassays: zebrafish embryos are an excellent tool to study the effects of aquatic toxicants. Image: SOLUTIONS

This approach is called effect-directed analysis and is designed to establish cause-effect relationships between chemical pollution and ecosystem response. Identification of particularly problematic compounds in aquatic environments is one of the key tasks for SOLUTIONS. All the information collected in this first campaign of sampling and analysis will provide the basis for in-depth ecological studies in 2015, when it is planned to also investigate fish and invertebrates in the river for adverse effects.

In order to inform the local population on SOLUTIONS and the goals of the project sampling campaign, Serbian TV filmed the sampling and interviewed Prof. Ivana Teodorovic from Faculty of Sciences and Dr. Werner Brack (UFZ), the coordinator of SOLUTIONS (video above). In a meeting with Serbian stakeholders both scientists explained the concepts of the project to representatives of national, provincial and city authorities for science and environment as well as water management companies.

For them the approach is of twofold interest. They appreciate the participation and active scientific role of a Serbian group in the leading European project on emerging pollutants. But they are also interested in the results on the water resources they want to protect particularly against the background of a planned wastewater treatment plant, which still needs funding to be realised. The SOLUTIONS investigations before the realisation of this plan will be a helpful basis to evaluate its success.

team 1

The sampling team from Germany (from left to right): Jörg Ahlheim (UFZ), Werner Brack (UFZ), Arslan Kamal (UFZ), Sven Seidensticker (RWTH). Image: SOLUTIONS

Reflections on the first SOLUTIONS General Assembly

December 15, 2014
GA pic

Group picture of the SOLUTIONS family at the General Assembly 2014. Image Deltares.

This week, we feature two guest posts from scientists at MARS’ sister project SOLUTIONS.  In this piece, Thomas-Benjamin Seiler (RWTH Aachen), David Lopez-Herraez and Werner Brack (UFZ Leipzig) reflect on the first SOLUTIONS General Assembly, which took place in October 2014.

“Are the fish from European rivers safe to eat?” It’s a simple but crucial question that Sibylle Ermler, environmental researcher at Brunel University in the UK, seeks to answer as a member of the SOLUTIONS ‘family’.  The first SOLUTIONS general assembly brought together questions like this from researchers across Europe, and created a space to collaborate and share ideas and potential solutions.

SOLUTIONS (project factsheet pdf) is the project name of the collaborative endeavour entitled “Solutions for present and future emerging pollutants in land and water resources management” for the 7th Framework Programme for Research and Technological Development of the European Commission under the coordination of Werner Brack, Helmholtz Centre for Environmental Research, UFZ, Germany. With funding budget of nearly 12 million Euro and the involvement of organisations from 17 European countries, SOLUTIONS is a major effort in European environmental research to ensure future ecological quality of our freshwater bodies as required by the EU Water Framework Directive (WFD).

Solutions General Assembly

From 13th to 16th October 2014, the SOLUTIONS consortium – consisting of a total of 39 partner institutions from academia, official authorities and business, and more than 100 scientists and professionals at all different levels of education – held their first annual general assembly. This gathering event was hosted by Jos van Gils and his group from the Dutch partner Deltares at their headquarters in the city of Delft, and had many unusual and productive features.

Attendees were challenged by a wealth of diverse communication and discussion formats including: conventional meetings focusing on sub-project and work-package tasks and oral presentations on SOLUTIONS’ progress; thematic workshops on risk assessment and on innovative regulation of chemicals promoting the dialog among participants using a fishbowl approach; and self-organised conversations on the project’s overarching issues using an open space methodology to address the most urgent questions. The SOLUTIONS general assembly even had its own Science Slam contest.

One highlight for sure was the mini-conference reporting on SOLUTIONS progress, featuring 30 5-minute presentations on all kind of different work conducted within the first year. Outcomes clearly showed that the project’s start has been very proficient. Positive feedback from our stakeholders promises that SOLUTIONS is likely to have major impacts on the way freshwater management will be done in the future in Europe and maybe even worldwide.

Thematic workshop “Innovative regulatory framework” where conversation and discussion between participants followed a “fishbowl” approach. Image SOLUTIONS

Thematic workshop “Innovative regulatory framework” where conversation and discussion between participants followed a “fishbowl” approach. Image: SOLUTIONS

Solutions-orientated and effects-based approaches

The general assembly addressed all major elements of a solutions-oriented approach – i.e. one that investigates the ‘cocktail’ of dissolved chemicals present in water – in prioritising and assessing emerging pollutants in the water cycle through monitoring, modelling and abatement. Monitoring-based approaches in SOLUTIONS have a strong focus on effect-based tools and multi- and non-target chemical analysis. Both are applied for screening and in-depth site-specific evaluation of freshwater contaminants.

Chemical monitoring for freshwaters is often focused on regulated substances which are known to pose a threat to aquatic ecosystems.  However, because there are so many new and novel chemicals entering freshwaters, the effect-based approach seeks to understand the ecological effects of the mixed chemical ‘cocktail’ present in water, and then to potentially link these effects to suitable management solutions (for more, see this European Commission report pdf).

Sonja Kaišarević of University of Novi Sad in Serbia wants to use such tools “to identify the culprits that are impacting environmental health.” She feels proud to be part of SOLUTIONS. The same holds true for Fangxing Yang, who is a postdoc at the UFZ in Leipzig, Germany. His task is to work on the “effect-directed analysis (EDA) in fish.” This approach aims to use biomarkers (i.e. indicators of biological state) and other effect-based tools together with in-depth chemical analysis for an effect-directed analysis of emerging freshwater pollutants in fish. Fangxing hopes to develop this effect-directed analysis approach as a tool to better protect the environment and human health. “I am feeling very comfortable within SOLUTIONS“, he says.

Joining up the pathways of chemical pollution

Small breakout groups worked on issues raised during plenary discussions or suggested by participants. One group on so-called Adverse Outcome Pathways (AOPs) tried to better outline how this approach can, and will, be implemented into the SOLUTIONS framework. The AOP approach aims to link effects on all different biological levels – from (sub)cellular mechanisms such as enzyme inhibition or DNA damage to impact on organs – with the eventually observed adverse effect of a contamination. The transfer from the effect on the individual – e.g. a single fish – to the population and the ecosystem was of special interest for the group. A key challenge arising from the discussion was that scientists have to define and agree on what an adverse effect of pollution actually is.

Predicting and managing chemical pollution

While monitoring is a key approach for the assessment of contamination today, it requires support from predictive approaches to identify chemicals that may become a problem in future. Emission, transport and fate modelling tries to draw insights out of the wealth of data from chemical regulation. Claudia Lindim from Stockholm University provided an impressive example of simulating PFOS (a man-made chemical used as a fabric stain repellent) concentrations in the Danube river basin.

However, SOLUTIONS does cover more than monitoring and modelling of contamination and risks only. For Annemarie van Wezel from the Dutch KWR Watercycle Research Institute, a key question is: “Where and how to spend limited resources for pollution abatement in a way to improve valuable natural areas and drinking water resources?” For Annemarie, combined chemical monitoring and modelling helped to identify the highest priority locations for an upgrade of wastewater treatment in the Netherlands.

Bringing all these different aspects together and establishing integrated and consistent roadmaps towards the anticipated products of SOLUTIONS was a big task during this general assembly. The enormous enthusiasm and involvement of all partners and numerous discussions from bilateral to workshop format helped to bring the project a big step forward. 

Networking at the SOLUTIONS GA in Delft. Also lunch and coffee breaks were strongly used for exchange of thoughts and ideas. Image Deltares

Networking at the SOLUTIONS general assembly in Delft. Image Deltares

The importance of young and early-career scientists

Numerous young and early-career scientists played an important role in the general assembly. They took the opportunity to present in different formats, to understand the concepts and to meet many of those scientists they knew from academic literature. For PhD students Ying Shao and Björn Deutschmann from RWTH Aachen University in Germany, the general assembly was especially useful to better understand the high complexity of the project, and to find their role within the consortium.

“I am overwhelmed”, Ying says, “but desperate to learn.” Her task in SOLUTIONS is to identify pollution hot spots and elucidate modes-of-action of freshwater pollutants using small-scale in vitro bioassays (i.e. using tissues or cells in the lab to study the effect of pollutants). Her work is supported by a four-year PhD fellowship from the China Science Council (CSC). After finishing her thesis Ying wants to return to China and contribute to environmental quality at home. Björn feels quite “challenged.” He works on a larger scale than Ying, investigating certain biomarkers in feral and lab-exposed fish. Both students want to help to make a step forward in Adverse Outcome Pathway definition and bring the concept to the organismal level.

The Delft meeting helped both young researchers to better shape their theses. They used the fantastic networking opportunities to establish valuable contacts with other members of the SOLUTIONS family. With a consortium spreading all over Europe, and reaching to China, Brazil and Australia, proper communication is a real challenge, even nowadays with all different kind of digital conversation channels. Meeting up face-to-face is still the most efficient way to exchange ideas, discuss problems, and make decisions. In these terms the general assembly was a huge success.

Science slam and a singing professor: a diverse and supportive project

The SOLUTIONS science slam on Wednesday evening proved that internal project communication does not have to be a dry, rather serious activity. Five slammers brought on stage high creativity in presenting their science to colleagues. The science slam was carried out without slideshow presentations and involved such diverse media as movie clips, live imaging and custom-made cardboard chemical analysis equipment. The winning contribution, however, borrowed from hard rock pioneers Deep Purple. Dirk Bunke of Öko-Institut e.V., Freiburg, Germany, got the whole audience to sing along “Smoke on the water – pollutants of tomorrow.”

A singing professor, highly enthusiastic PhD students, experts on AOPs, bioassays, chemical analysis, statistics and modelling; laboratories equipped with state-of-the-art scientific devices; and an unlimited amount of creativity to find the best solutions: the Delft general assembly showed that the real strength of the project lies in a consortium so broad and diverse that virtually any research problem of any colleague can be solved by someone from the project. This unique capability of the SOLUTIONS family is good news for environmental quality of European freshwater bodies and promises very valuable results and developments.

Coming together. The SOLUTIONS GA facilitated scientific exchange and helped the consortium to better get known to each other. Image Deltares

Coming together. The SOLUTIONS GA facilitated scientific exchange and helped the consortium to better get known to each other. Image Deltares

Bringing together projects and collaborators from across the world

Armelle Herbert could be one of the people to benefit from the project outcomes. She is a representative of Veolia Environnement Recherche & Innovation France, and a member of the SOLUTIONS stakeholder board, a panel of decision-makers and end-users involved throughout the life of the project. She liked the innovative approach of the general assembly, its interactivity, and the ease with which she could start conversations with the participants. She enjoyed that it was no ‘classical’ scientific conference, and the mini-conference was a particularly refreshing experience for her. For the first time, our Stakeholder Board members from the United States Environmental Protection Agency, Rob Burgess, and Environment Canada, Mark Hewitt, joined a SOLUTIONS meeting. They identified plenty of common interests, problems to solve and approaches to take and presented the North American perspective on emerging pollutants in the Stakeholder Board meeting.

The general assembly was also very happy to host Sebastian Birk representing the partner project MARS and Damià Barceló as the coordinator of GlobAqua. Close collaboration between the projects has been identified as a key step to increase the scientific impact towards better understanding and protecting aquatic ecosystems against multiple stressors including emerging pollutants. In outstanding presentations, SOLUTIONS participants learnt about the concepts and approaches of both partner projects.

SOLUTIONS: a great opportunity

“In the beginning I was overwhelmed by the complexity”, Knut Erik Tollefsen of NIVA, Norway, suggests. Knut Erik is the leader of the whole working package on effect-based methods, and had a significant share in writing the entire SOLUTIONS proposal. But still for him the project is a challenge, showing the large effort the scientists put into their work. “Then I was very positively surprised by the assembly of competence within the project consortium”, he continues, which makes him “confident that we will achieve what we aim for.” Andreas Focks of ALTERRA in The Netherlands adds, “this project is a great opportunity to achieve things that were not achievable before.” Certainly for most participants the general assembly in Delft brought the very same feeling.

17th IWA Conference on Diffuse Pollution and Eutrophication

December 11, 2014

The conference location at Best Western, Berlin.

The 17th IWA International Conference on Diffuse Pollution and Eutrophication has been announced to take place at the Best Western Premier Hotel MOA Berlin, Berlin from 13 to 18th September 2015. The abstract submission is open here.

Organised by the Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB) and International Water Association (IWA) the conference aims to:

“The complexity and variety of processes, substances as well as interests and needs of stakeholder and users turns basin and water quality management into a challenging task and unites scientists, economists, engineers, lawyers, policy specialists and stakeholders to develop new approaches and solutions to protect natural resources.

The DIPCON 2015 continuous a 20 year tradition of conferences on international exchange of knowledge and technology among established and young specialists from developed and developing countries. The conference’s goal is to bridge between basic and applied science, technical solutions and the knowledge transfer into basin management. Here, following a holistic perspective, diffuse point source pollution is considered likewise. The conference provides a platform for contemporary and high-quality research and technical solutions as well as for international networking, establishing and intensifying cooperation between science, administration and industry.”

Berlin Skyline.  Image: Annett Wetzig

Berlin Skyline. 

The conference programme will include sessions on pollutants and sources of diffuse pollution in surface and ground waters; diffuse pollution from agriculture and forestry, as well as from urban areas and mining; diffuse pollution under global changes; nutrients and eutrophication issues; surface waters under multiple stress; modelling and monitoring; policies, regulations and education to control diffuse pollution and integrated watershed management towards controlling diffuse pollution.

Delegates will also be offered the opportunity to take part in a conference dinner and to attend a field excursion.

Follow the Conference website for updates.

How will the hydropower boom affect global river ecosystems?

December 1, 2014

Itaipu Hydropower Project on the Paraná River located on the border between Brazil and Paraguay. Image: Wikipedia


There are currently around 3,700 major new hydropower dam projects planned or under construction across the world, many of them in developing countries which lack widespread, reliable and affordable electricity supplies.  However, many of these same countries support biodiverse and relatively ‘natural’ large river systems, which raises questions of how to balance the potential ‘green’ energy gains from hydropower projects with the potential harm – barriers to fish migration, siltation, habitat change amongst others – they can cause to river ecosystems.

A new study ‘A global boom in hydropower dam construction‘, has been carried out by Professor Christiane Zarfl from the University of Copenhagen and colleagues at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) in Berlin, including BioFresh head Klement Tockner. The research team compiled data on future major hydropower projects to predict how much energy would potentially be produced if all projects were completed; and the potential impacts they would have on currently free-flowing river ecosystems.

The team found that despite a global ‘boom’ in hydropower developments, the extra electricity production “will not close the energy gap“, because energy demands will increase, due to growing human populations globally.  So despite the growth in global hydropower capacity – if all 3,700 dam projects were completed, the capacity would double to 1700 gigawatts (GW) within the next 20 years – the study predicts that the proportional hydropower contribution to overall energy production would barely alter (16% in 2011, 18% in 2040).  In short, the ‘boom’ in hydropower projects across the world – and their negative impacts on river ecosystems – will only keep pace with global energy demands, as opposed to providing a higher share of ‘green’ energy to overall supply.

The study shows the geographical spread of where new hydropower projects are planned, and so provides a basis for understanding where and how the various trade-offs and conflicts between energy production, freshwater biodiversity and human livelihoods are likely to take place in the future.  The maps below show: (1) the distribution of future hydropower projects, under construction (blue dots) or planned (red dots); and (2) the number of hydropower projects for each major river basin.   The maps show how the majority of hydropower construction will take place in developing countries and emerging economies, particularly along the Amazon basin in Brazil, the Ganges–Brahmaputra basin in India and Nepal, and the Yangtze basin in China.

Map (1): Global spatial distribution of future hydropower dams, either under construction (blue dots 17 %) or planned (red dots 83 %).  Image: Zarfl et al (2014)

Map (1): Global distribution of future hydropower dams, either under construction (blue dots 17 %) or planned (red dots 83 %). Image: Zarfl et al (2014)

Map (2): Number of future hydropower dams per major river basin. Image Zarfl et al (2014)

Map (2): Number of future hydropower dams per major river basin. Image Zarfl et al (2014)

Speaking to ECOS Magazine, Professor Zarfl said, “Hydropower is an integrated part of transitioning to renewable energy and currently the largest contributor of renewable electricity.  However, it is vital that hydropower dams do not create a new problem for the biodiversity in the world’s freshwater systems, due to fragmentation and the expected changes in the flow and sediment regime.  That is why we have compiled available data on future expected hydropower dams – to form a key foundation for evaluating where and how to build the dams and how to operate them sustainably.”

The study estimates that 25 of the 120 large river systems currently classified as ‘free-flowing’ would lose that status, as dam construction fragments and modifies their courses.  It suggests that “Worldwide, the number of remaining free-flowing large river systems will thus decrease by about 21 percent” – a decrease which is likely to be most prominent on South American rivers, which are some of the world’s most unique and diverse freshwater ecosystems.

The IUCN Freshwater Fish Specialist Group states that South America is the most diverse continent for freshwater fish species, globally, with an estimated 4,000 species (and roughly 100 new species found each year).  The Amazon, Mekong, and Congo basins, which will be heavily impacted by future hydropower dams, jointly contain 18 % of the global freshwater fish diversity, and the Balkans – a hot spot for future hydropower development – are an important region for freshwater biodiversity in Europe, as described by a recent IUCN report.

The dam wall on the Itaipu hydropower project. Image: International Hydropower Association, Flickr

The dam wall on the Itaipu hydropower project. Image: International Hydropower Association, Flickr

Freshwaters are already amongst the most threatened ecosystems in the world.  Hydropower developments can have negative effects on freshwater species in a number of ways – blocking migration routes, changing river flows and habitat, and dropping loads of fine sediment in areas where the river flow is slowed, potentially causing eutrophication and covering fish breeding sites.  Biodiversity loss as a result of hydropower projects has potentially negative knock-on effects for communities around rivers which rely on fishing for food and freshwater for drinking, washing and sanitation.

Despite being a low-carbon, renewable energy source, hydropower can significantly alter and degrade the rivers where it is implemented.  So, what is the solution to growing global energy demands?  Professor Zarfl and colleagues state that, “Even if the entire technically feasible hydropower potential will be exploited, which would correspond to a dam construction boom almost five times that currently estimated, hydropower would contribute less than half of the global electricity demand projected until 2040.”  

Hydropower water release.  Image: Global Water Partnership, Flickr

Hydropower water release. Image: Global Water Partnership, Flickr

Given this inability to keep up with demand, and the related environmental costs, is hydropower the most suitable response to global energy needs?  On average, life-cycle greenhouse gas emissions from hydroelectricity are more than 30 times lower than that of coal – potentially providing a key tool in mitigating climate change.  However,  how can we reconcile the potential climate benefits of hydropower with the potential harm it does to freshwater biodiversity?

The authors suggest that one solution might be to concentrate new hydropower developments on river basins that have existing hydropower projects, and are fragmented already – a new and perhaps pragmatic take on the old conservationists’ mantra of ‘preserve the best, restore the rest’.  For example, hydropower projects on the Rufiji River in Tanzinia – the last remaining large free-flowing river network in East Africa – might be moved to the Nile and Zambezi Rivers, which are already heavily fragmented today.  Whether this approach can account for spatial variation in energy needs, economic investment and political will is another matter.

The database of future major hydropower projects compiled by Professor Zarfl and colleagues provides a comprehensive new resource for conservationists, environmental planners and policy makers to help guide how and where hydropower developments are planned in the future.  However, it remains to be seen whether the growing global demand for new hydropower supply can be reconciled with the threats developments pose to freshwater ecosystems in the future.

14th International Symposium on Aquatic Plants

November 25, 2014
Playfair Library, Edinburgh.  Image: Edinburgh University

Playfair Library, Edinburgh. Image: Edinburgh University

The 14th International Symposium on Aquatic Plants has been announced to take place at the Playfair Library in Old College, Edinburgh between 14-18th September 2015.  Registration and abstract submission is open here.

Organised by MARS colleagues at the Centre for Ecology and Hydrology in Edinburgh, the conference aims to: “promote debate on all issues relating to the science and management of aquatic vegetation. Interest in aquatic plants has been growing and diversifying and to reflect this there will be a wide Scientific Programme which will appeal to scientists and managers.”

The conference programme will include sessions on Ecotoxicology, Trophic Interactions in Macrophyte Beds, The Future of Invasive Species Management, Community Responses to Environmental Change in Space and Time, Aquatic Plants and Physical Processes, Restoration, Aquatic Plant Monitoring, Ecological Stoichiometry and Nutrient Cycling, Vegetation & Dams, and Fundamental Science.

Delegates will also be offered to opportunity to take part in a conference dinner and ceilidh at Surgeon’s Hall, and to attend a field excursion to Loch Leven to see an excellent example of successful lake restoration.

Follow the Symposium websitetwitter and the #aquatic plants15 hashtag for updates.


Get every new post delivered to your Inbox.

Join 357 other followers

%d bloggers like this: